Contaminants of Concern & Emerging Concern

September 27, 2023

Guilford County LEPC – BISE Conference

"With each zero of added sensitivity, myriads of other chemicals are evident...That's alarming to a public whose definition of a <u>trace</u> hasn't changed since the 1970's and whose ideal remains 'pure' water...It's a tremendous problem when you're interpreting risk for the public."

 Christian Daughton, EPA National Exposure Laboratory, Las Vegas NV

Background Information City of Greensboro WWTP

- T. Z. Osborne (TZO) WWTP
 - Design Flow: 56 MGD Actual Eff Flow: ~33 MGD
 - 26 Significant Industrial Users (SIUs)
- TZO Discharges to: South Buffalo Creek →
 Buffalo Creek → Reedy Fork Creek →
 Haw River → Jordan Lake → Cape Fear River →
 Atlantic Ocean

Greensboro Wastewater Collection System

- 1,600 miles of sewer lines
- 50 Pump stations
- 33,917 manholes

- 100,000+ connections to the sanitary sewer
- 8,000⁺ commercial/industrial connections/accounts
- Daily flow transfer from NB Pump Station to TZO
 - NB Transfer flow enters TZO <u>after</u> influent sampling point – WWTP Flow Split: TZO ~55%, NB ~45%

CONTAMINANTS OF CONCERN

"Conventional" Pollutants & Toxics

• June 2020 – Accidental discharge

– Review Spill Plans & Procedures

• COVID-19 \rightarrow New staff & high turnover rates

- Ensure staff are properly trained

• May 2022 - TZ Osborne Plant Upset

- Accidental discharge of concentrated biocide

Nutrients - Jordan Lake Rules

- Total Phosphorus
- Total Nitrogen
- T.Z. Osborne upgrade
 - 56 MGD
 - Single-phase activated sludge to 5-Stage BNR
- Haw River Nutrient Compliance Association (HRNCA)

CONTAMINANTS OF EMERGING CONCERN

Emerging Constituents: What Do They Mean to a POTW? Targeted as "*The* Source" by Environmentalists **Responsible for "Removing Them"** (says Public/DS) Over-reaction by Political/Regulatory Sectors Unrelenting Media Coverage **B**ulls Eye on Biosolids Land Application Liability if you try to be proactive Expensive testing for new chemicals

Nobody Knows the Trouble We've Seen...

Greensboro and 1,4-Dioxane

1,4-dioxane

- "Forever chemical"
- Stabilizer
- Highly miscible in water
- Found in surfactants, cosmetics, hair relaxers
- Not "on the label" look for:
 - Sodium laureth sulfate
 - PEG compounds
 - -xynols, -ceteareths, -oleths

2014 Background Information City of Greensboro POTWs

- North Buffalo (NB)
 - Design Flow: 16 MGD Actual Eff Flow: ~6 MGD
 - 4 Significant Industrial Users
 - ~6 MGD flow transferred to T. Z. Osborne
 - Waste Activated sludge pumped to TZO
- T. Z. Osborne (TZO)
 - Design Flow: 40 MGD Actual Eff Flow: ~24 MGD
 - 26 Significant Industrial Users (SIUs)
 - Solids dewatering (centrifuges) and incineration (fluidized bed) conducted for both plants at TZO
- Both Discharge to Haw River→Cape Fear River

The Beginning...

- EPA Unregulated Contaminant Monitoring Rule 3 (UCMR 3)
 - Sampling from 2013-2015
 - Early results showed several drinking water plants (with Cape Fear River intakes) with 1,4-dioxane detections
 - NCSU Professor sees data...sends students up Cape Fear River
- NCSU presentation to DEQ states Greensboro is 1,4-dioxane hot spot
- June 2014 TZO NPDES Permit issued with 1,4-dioxane reopener
- Greensboro Position: Let EPA finish UCMR3, review data and see what they decide to do about 1,4-dioxane

Timeline

<u>Apr 2014-Oct 2014</u>: NPDES Permit; Meetings-DEQ, Internal, SIU/IUs

Oct 2014: DEQ & NCSU begin official 1,4-dioxane studies

<u>*Mar-Oct 2015*</u>: Peer Meeting; Initial POTW Sampling = 58 samples

<u>*May-Oct 2015*</u>: Trunkline Monitoring = 51 samples <u>*Oct 2015*</u>: Significant SIU Source Identified; TZO sampling suspended

Significant Source Found

- Greensboro suspended POTW sampling for a period of time to allow the industry to:
 - Conduct internal facility/processes investigation
 - Perform internal sampling and analyses
 - Determine source of discharge at their facility
 - Research processes for reduction
 - Develop 1,4-dioxane Reduction Plan
- IWS in contact with them continuously
- Everyone working hard...still under the radar

Source and POTW: "What Do We Do Now?"

- No Federal Drinking Water MCL
- Various 1,4-Dioxane criteria

- EPA Drinking Water Health Advisory = $35 \mu g/l$
 - Characterized as "likely to be carcinogenic to humans"
- NC Groundwater standard: $3.0 \,\mu g/l$
- NC Human Health surface water criterion with associated estimated lifetime cancer risk of 1/1,000,000**
 - Water Supplies = $0.35 \ \mu g/l$
 - All other water bodies = $80 \mu g/l$

Reductions Achieved

- POTW sampling resumed and showed significant reduction
- POTW effluent reductions achieved only because SIU/IU achieved reductions
 - As with most new reduction procedures and treatment processes there have been a few blips
- Greensboro verbally shared POTW results with DEQ and downstream utility

EPA Approved WW Method

- <u>September 2017</u>: EPA promulgates 40 CFR Part 136 method for 1,4-dioxane
 - EPA 624.1 Purgeable Organics by GC/MS
 - Grab sample in VOA vials
- Greensboro terrified Part 136 WW method would not be comparable to SW method
 - Success might not be real...efforts for naught
 - Splits on both methods for 5 months to confirm
 - Amazingly comparable data (this time!)

DEQ Administrative Letter

- October 7, 2017: NB POTW Closed
- <u>October 31, 2017</u>: DEQ Administrative Letter to Greensboro TZO POTW
 - Starting <u>December 2017</u>, TZO must conduct monthly effluent monitoring for 1,4-dioxane
 - Use EPA WW Method 624.1 (grab sample)
 - Report results on eDMR
- POTW no longer under the radar

Special Order by Consent

- Original Special Order by Consent (SOC) between the City & Environmental Management Commission (EMC) signed in <u>March 2021</u> with effective date of <u>May 1</u>, <u>2021</u>.
 - The initial and primary goal was not to cause downstream drinking water supplies to exceed the EPA health advisory 35 ug/L

Amended SOC

- <u>November 22, 2021</u>: Amended SOC with an effective date of <u>December 1, 2021</u>.
- Amended SOC Compliance Values:
 - Year 1 = 35 ug/L
 - May 1, 2021 April 30, 2022
 - Year 2 = 31.5 ug/L
 - May 1, 2022 April 30, 2023
 - Year 3 = 23 ug/L
 - May 1, 2023 April 30, 2024

Amended SOC

- Amended SOC Sampling Plan includes 60 sites:
 - 7 TZO facility sites
 - 7 Industrial trunkline sites
 - 5 Domestic/Commercial trunkline sites
 - 5 Greensboro Drinking water sources sites
 - 32 Significant Industrial User (SIU) sites
 - 4 Other sites

Greensboro Contaminants of Emerging Concern (CEC) Policy

- *February 1, 2022*: New CEC Policy effective
 - Outlines Greensboro's approach to CECs
 - Purpose, Legal Authority, Definitions
 - Not specific to 1,4-dioxane
- City consulted with environmental attorney
- Provided to SIUs/IUs and posted on website
 - ERP updated as well, comments solicited from SIUs/IUs, will be submitted to NCDEQ soon
 - SUO modifications are also forthcoming in order to completely implement the Policy.

Resources and Costs

- POTW (still counting)
 - Hundreds of samples
 - Thousands of man-hours
 - Tens of thousands of dollars
- SIU/IU (still counting)
 - Hundreds of samples
 - Thousands of man-hours
 - Hundreds of thousands of dollars

Results thus Far

• During initial sampling phase of City's 2015 1,4-dioxane study, TZO sand filter effluent <u>composite</u> samples averaged 126ug/L

SOC Year 1

- TZO effluent (52 eDMR grab samples) averaged 32.7ug/L
- 74% reduction from 2015 effluent concentrations

SOC Year 2

- TZO effluent (52 eDMR grab samples) averaged 2.96ug/L
- 98% reduction from 2015 effluent concentrations
- Source reduction key to success

NC Surface WQS

- March 2022: EMC adopted 1,4-dioxane WQS
 - 0.35 ug/L for Water Supply waters
 - 80 ug/L for all other waters.
 - The T. Z. Osborne (TZO) facility would be subject to the 0.35 ug/l standard.
- City (among others) submitted objections
 Fiscal Note & proper legislative process
- May 2022: RRC objected to 1,4-dioxane WQS

PFAS (Per and Polyfluoroalkyl Substances)

- Manmade fluorinated compounds in commercial use since 1940s
- 9,000+ compounds known as "forever chemicals"
- Widely used for resistance to heat, water, & oil

- Common Uses
 - Non-stick cookware
 - Water-repellant clothing
 - Stain resistant textiles
 - Cosmetics
 - Firefighting foams
 - Electroplating (fume suppressant)

PFAS

- Entities providing essential public services are not "users" or "producers"
 - Drinking water treatment,
 - Wastewater treatment,
 - Biosolids recycling, etc.
- Received by these entities due to abundance in today's society

PFAS by the Numbers

*Credit – Metropolitan Water Reclamation District of Greater Chicago

PFAS

- NC DEQ addressing PFAS since 2017
 GenX found in Cape Fear River
- <u>2019</u>: NC DEQ requires PFAS, 1,4dioxane sampling by 25 POTWs with Pretreatment Programs in Cape Fear River basin
- <u>2021</u>: <u>PFAS Strategic Roadmap</u>: <u>EPA's</u>
 <u>Commitments to Action 2021-2024</u>
 UCMR 5
 - National POTW PFAS sampling
- <u>2022</u>: <u>NC DEQ Action Strategy for PFAS</u>

EPA - UCMR 5

- <u>March 11, 2021</u>: UCMR 5 published in Federal Register
- Sampling began January 2023 & continue through December 2025
- <u>https://www.epa.gov/system/files/document</u> <u>s/2022-02/ucmr5-factsheet.pdf</u>
- 29 PFAS & Lithium

Contaminant	CASRN ¹	MRL ² (µg/L)	Additional Information					
25 PFAS: EPA Method 533								
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	763051-92-9	0.005						
1H,1H, 2H, 2H-perfluorodecane sulfonic acid (8:2FTS)	39108-34-4	0.005						
1H,1H, 2H, 2H-perfluorohexane sulfonic acid (4:2FTS)	757124-72-4	0.003						
1H,1H, 2H, 2H-perfluorooctane sulfonic acid (6:2FTS)	27619-97-2	0.005						
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	919005-14-4	0.003	PEAS are a group of synthetic					
9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	756426-58-1	0.002	chemicals used in a wide range					
hexafluoropropylene oxide dimer acid (HFPO-DA)(GenX)	13252-13-6	0.005	of consumer products and					
nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	151772-58-6	0.02	industrial applications					
perfluoro (2-ethoxyethane) sulfonic acid (PFEESA)	113507-82-7	0.003	including: non-stick cookware,					
perfluoro-3-methoxypropanoic acid (PFMPA)	377-73-1	0.004	water-repellent clothing, stain-					
perfluoro-4-methoxybutanoic acid (PFMBA)	863090-89-5	0.003	resistant fabrics and carpets,					
perfluorobutanesulfonic acid (PFBS)	375-73-5	0.003	cosmetics, firefighting foams,					
perfluorobutanoic acid (PFBA)	375-22-4	0.005	electroplating, and products					
perfluorodecanoic acid (PFDA)	335-76-2	0.003	that resist grease, water, and					
perfluorododecanoic acid (PFDoA)	307-55-1	0.003	oll. PFAS are found in the blood					
perfluoroheptanesulfonic acid (PFHpS)	375-92-8	0.003	water air fish and soil at					
perfluoroheptanoic acid (PFHpA)	375-85-9	0.003	locations across the United					
perfluorohexanesulfonic acid (PFHxS)	355-46-4	0.003	States and the world.					
perfluorohexanoic acid (PFHxA)	307-24-4	0.003						
perfluorononanoic acid (PFNA)	375-95-1	0.004						
perfluorooctanesulfonic acid (PFOS)	1763-23-1	0.004						
perfluorooctanoic acid (PFOA)	335-67-1	0.004						
perfluoropentanesulfonic acid (PFPeS)	2706-91-4	0.004						
perfluoropentanoic acid (PFPeA)	2706-90-3	0.003						
perfluoroundecanoic acid (PFUnA)	2058-94-8	0.002						
4 PFAS: EPA Metho	od 537.1							
N-ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)	2991-50-6	0.005						
N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)	2355-31-9	0.006	See above for PFAS					
perfluorotetradecanoic acid (PFTA)	376-06-7	0.008	information.					
perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.007						
Metal/Pharmaceutical: EPA Method 200.7; SM ³ 3120 B (2	2017); SM ³ 31	L <mark>20</mark> B-99	(1999); ASTM ⁴ D1976-20					
lithium	7439-93-2	9	Naturally occurring metal that may concentrate in brine waters; lithium salts are used as pharmaceuticals, used in electrochemical cells, batteries, and in organic syntheses.					

Draft WW Analytical Methods

- EPA Draft Method 1621
 - Screening Method for the Determination of Adsorbable Organic Fluorine (AOF)
 - Combustion Ion Chromatography (CIC)
 - Aqueous Matrices
- EPA Draft Method 1633
 - Draft Method for 40 PFAS Compounds
 - Liquid Chromatography/Mass Spectrometry (LC-MS/MS)
 - Aqueous, Solid (soil, biosolids, sediment), &
 Tissue Matrices

EPA Draft Method 1633

Group	Chemical Name	Abbreviation	CAS Number
	Perfluorobutanesulfonic acid	PFBS	375-73-5
	Perfluoropentanesulfonic acid	PFPeS	2706-91-4
Perfluoroalkyl sulfonic acids	Perfluorohexanesulfonic acid	PFHxS	355-46-4
	Perfluoroheptanesulfonic acid	PFHpS	375-92-8
	Perfluorooctanesulfonic acid	PFOS	1763-23-1
	Perfluorononanesulfonic acid	PFNS	68259-12-1
	Perfluorodecanesulfonic acid	PFDS	335-77-3
	Perfluorododecanesulfonic acid	PFDoS	79780-39-5
Perfluoroalkyl sulfonic acids Perfluoroalkyl carboxylic acids	Perfluorobutanoic acid	PFBA	375-22-4
	Perfluoropentanoic acid	PFPeA	2706-90-3
	Perfluorohexanoic acid	PFHxA	307-24-4
Perfluoroalkyl carboxylic acids	Perfluoroheptanoic acid	РҒНрА	375-85-9
	Perfluorooctanoic acid	PFOA	335-67-1
	Perfluorononanoic acid	PFNA	375-95-1
	Perfluorodecanoic acid	PFDA	335-76-2
	Perfluoroundecanoic acid	PFUnA	2058-94-8
	Perfluorododecanoic acid	PFDoA	307-55-1
	Perfluorotridecanoic acid	PFTrDA	72629-94-8
	Perfluorotetradecanoic acid	PFTeDA	376-06-7

EPA Draft Method 1633 cont'd

Group	Chemical Name	Abbreviation	CAS Number
	Hexafluoropropylene oxide dimer acid	HFPO-DA	13252-13-6
Per-and Polyfluoroether carboxylic acids	(GEN X)		
	4,8-Dioxa-3H-perfluorononanoic acid	ADONA	919005-14-4
	Perfluoro-3-methoxypropanoic acid	PFMPA	377-73-1
	Perfluoro-4-methoxybutanoic acid	PFMBA	863090-89-5
	Nonafluoro-3,6-dioxaheptanoic acid	NFDHA	151772-58-6
Fluorotelomer sulfonic acids	4:2 Fluorotelomer sulfonic acid	4:2-FTS	757124-72-4
	6:2 Fluorotelomer sulfonic acid	6:2-FTS	27619-97-2
	8:2 Fluorotelomer sulfonic acid	8:2-FTS	39108-34-4
	3:3 Fluorotelomer carboxylic acid	er carboxylic acid 3:3 FTCA	356-02-5
Fluorotelomer carboxylic acids	5:3 Fluorotelomer carboxylic acid	5:3 FTCA	914637-49-3
	7:3 Fluorotelomer carboxylic acid	7:3 FTCA	812-70-4
Perfluorooctane sulfonamides	Perfluorooctane sulfonamide	PFOSA	754-91-6
	N-methylperfluorooctane sulfonamide	NMeFOSA	31506-32-8
	N-ethylperfluorooctane sulfonamide	NEtFOSA	4151-50-2

EPA Draft Method 1633 cont'd

Group	Chemical Name	Abbreviation	CAS Number
	N-methylperfluorooctane	N-MeFOSAA	2355-31-9
Perfluorooctane	sulfonamidoacetic acid		
sulfonamidoacetic acids	N-ethylperfluorooctane		2991-50-6
	sulfonamidoacetic acid	N-ELFUSAA	
	N-methylperfluorooctane	MeFOSE	24448-09-7
Perfluorooctane sulfonamide	sulfonamidoethanol		
ethanols	N-ethylperfluorooctane	1001 00 0	
	sulfonamidoethanol	ELFOSE	1691-99-2
Ether sulfonic acids	9-Chlorohexadecafluoro-3-oxanonane-		756426-58-1
	1-sulfonic acid (F-53B Major)	9CI-PF30N3	
	11-Chloroeicosafluoro-3-oxaundecane-		763051-92-9
	1-sulfonic acid (F-53B Minor)	11CI-PF30003	
	Perfluoro(2-ethoxyethane) sulfonic		112507 02 7
	acid	FFEESA	113207-82-7

PFAS

- NC-DWR
 - PFAS addressed in recent draft NPDES permits
 - Monitoring requirements effective when EPA Draft Methods finalized
 - PFAS survey for all new SIUs
- City of Greensboro
 - 2019: added PFOS & PFOA to SIU/IU permit applications
 - Drinking Water Treatment Plant Upgrades
 - Mitchell Water Plant

Source Considerations

- Industrial Activities Identified by EPA as Potential PFAS Sources
 - Airports, including FAA training facilities
 - Aerospace, including aircraft maintenance
 - Fire training facilities
 - Electroplating & Metal Finishing
 - Centralized Waste Treatment
 - Landfills
 - Pharmaceutical mfg.
 - Semiconductor mfg.
 - Organic Chemical & Synthetic Fibers Mfg (OCPSF)

Source Considerations

- Source at the Source...
 - Actual Raw Material?
 - Inert by-product in purchased raw materials?
 - Formed during on-site production inadvertently?
- Source at the Source Control...
 - Chemical Substitution?
 - Chemical supplier change with \downarrow contaminants?
 - Process changes, including process shut-down?
 - Pretreatment System?
 - Zero discharge?
 - Facility shut-down?

What We Need from State/ Federal Regulatory Agencies

- National standards *not* state roulette
 - Developed by pure science not political science
 - Prioritized by actual risk
- Public Relations and Public Education re: Risk Assessment and Risk Communication
 - Education of the public and legislators to prevent knee-jerk reaction to every new detection

Soapbox

• Regulation/health effects research on new chemicals prior to registration

Contact Info

Amy Varinoski Pretreatment Coordinator (336) 433-7227 amy.varinoski@greensboro-nc.gov

