

Civil & Environmental Consultants, Inc.

Emerging Contaminants– Per and Polyfluoroalkyl (PFAS) Substances

George Tyrian, PE

2023 BISE Conference Greensboro, NC and September 27, 2023

Agenda

- What are they?
- Where do they come from?
- Why all the fuss?
- What are they (Round 2)?
- How do we measure them?
	- Laboratory Analysis
	- Sampling Methods
- Regulatory issues?
- What do we do about it?
	- Drinking water
	- Groundwater/Surface water
	- Wastewater
	- Remediation
- Summary and Conclusions

Overview - What are PFAS? Overview - What are PFAS?

Per and Poly-fluoroalkyl substances

• Generic family (over 5000) of chemicals

• Chains of carbon atoms surrounded by fluoride atoms **Overview - What are PFAS?**

Fand Poly-fluoroalkyl substances

• Generic family (over 5000) of chemicals

• Chains of carbon atoms surrounded by fluoride atoms

• Developed in 1940's

-
- Chains of carbon atoms surrounded by fluoride atoms
-
- **Overview What are PFAS¹**
 Poly-fluoroalkyl substances

 Generic family (over 5000) of chemicals

 Chains of carbon atoms surrounded by fluoride atom

 Developed in 1940's

 Used to make products that resist heat **Overview - What are PFAS?**

France Poly-fluoroalkyl substances

• Generic family (over 5000) of chemicals

• Chains of carbon atoms surrounded by fluoride atoms

• Developed in 1940's

• Used to make products that resist

OVETVIEW - What are PFAS?
and Poly-fluoroalkyl substances
Generic family (over 5000) of chemicals
Chains of carbon atoms surrounded by fluoride atoms
Developed in 1940's
Used to make products that resist heat, oils,
grea **OVETVIEW - What are PFAS?**

For and Poly-fluoroalkyl substances

• Generic family (over 5000) of chemicals

• Chains of carbon atoms surrounded by fluoride atoms

• Developed in 1940's

• Used to make products that resist compounds: perfluorooctanoic acid (PFOA) and Perfluoroctane sulfuric acid (PFOS)

Where Do They Come From?

Where Do They Come From?
• Commercial household products, including stain- and water-repellent fabrics, nonstick products (e.g., Teflon), polishes, waxes, paints, cleaning products, and fire-fighting foams (AFFF). fabrics, nonstick products (e.g., Teflon), polishes, waxes, paints, cleaning products, and fire-fighting foams (AFFF).

PFAS History Timeline

- In 1938, Roy J. Plunkett at the DuPont Company's Jackson Laboratory discovered polytetrafluoroethylene (PTFE) researching refrigerants **PFAS History Timeline**
• In 1938, Roy J. Plunkett at the DuPont Company's Jackson Laboratory
discovered polytetrafluoroethylene (PTFE) researching refrigerants
• 1940 – Production of PFOA and PFOS begins
• 1950s – PFOA an **PFAS History Timeline**

• In 1938, Roy J. Plunkett at the DuPont Company's Jackson Lake

discovered polytetrafluoroethylene (PTFE) researching refriger

• 1949 – Teflon (PTFE) introduced by DuPont

• 1950s – PFOA and PFOS **PFAS History Timeline**
• In 1938, Roy J. Plunkett at the DuPont Company's Jackson Laboratory
discovered polytetrafluoroethylene (PTFE) researching refrigerants
• 1940 – Production of PFOA and PFOS begins
• 1950s – PFOA an
-
-
-
-
- **PFAS History Timeline**

 In 1938, Roy J. Plunkett at the DuPont Company's Jackson Laboratory

 1940 Production of PFOA and PFOS begins

 1949 Teflon (PTFE) introduced by DuPont

 1950s PFOA and PFOS both dominan • In 1938, Roy J. Plunkett at the DuPont Company's Jackson Laboratory
discovered polytetrafluoroethylene (PTFE) researching refrigerants
• 1940 – Production of PFOA and PFOS begins
• 1950s – PFOA and PFOS both dominant con In 1938, Roy J. Plunkett at the DuPont Company's Jackson Laboratory
discovered polytetrafluoroethylene (PTFE) researching refrigerants
1940 – Production of PFOA and PFOS begins
1959 – Teflon (PTFE) introduced by DuPont
195

Relative Ranges of PFAS

- PFAS concentrations in biosolids are relatively low compared to other household sources (food packaging, makeup)
- Communication balancing act land application of biosolids is beneficial
- "Sources" are likely to include everyday consumer products
- Air emissions can affect quality of rainfall and runoff

Source: CASA,

https://static1.squarespace.com/static/54806478e4b0dc44e1698e88/t/63231 956ab2d672152b7a5a2/1663244631201/Bar+Chart+PFAS+2022%5B3%5D.pdf

From: WEF Task Force Meeting 9/5/2023

Why All The Fuss?

- Manmade and do not occur naturally
- PFAS have the ability to buildup and persist overtime
- **Pervasive**
- Persistent
- Bioaccumulative
-
-
-

(1 PPT = 1 grain of sand in Olympic swimming pool)

Why All The Fuss?

- Associated with adverse health effects
- Various studies, more being done
- Levels bioaccumulate in animals and humans
- ATSDR lists human risks may include:
	- Increased cholesterol levels
	- Liver impact
	- Infant birth weight decrease
	- Decreased vaccine response in children
	- Immune system impacts
	- High blood pressure
	- Increased risk of kidney or testicular cancer
- Most common exposure is through drinking water and food

**What are they (Round 2)
PFAS Properties and Name
PFAS Types:
• Polymer vs. Non-Polymer PFAS
• Perfluoroalkyl substances
• Polyfluoroalkyl substances What are they (Rou
PFAS Properties and
PFAS Types:
• Polymer vs. Non-Polymer PFAS
• Polyfluoroalkyl substances
• Naming Conventions What are they (Rou

PFAS Properties and

PFAS Types:

• Polymer vs. Non-Polymer PFAS

• Polyfluoroalkyl substances

• Naming Conventions

• Long-Chain vs. Short-Chain What are they (I
PFAS Properties a**
PFAS Types:
• Polymer vs. Non-Polymer PFAS
• Perfluoroalkyl substances
• Naming Conventions
• Long-Chain vs. Short-Chain
• Linear vs. Branched **What are they (Roun
PFAS Properties and N
PFAS Types:
• Polymer vs. Non-Polymer PFAS
• Perfluoroalkyl substances
• Polyfluoroalkyl substances
• Long-Chain vs. Short-Chain
• Linear vs. Branched
• Currently short-chain PFAs What are they (R

PFAS Properties a

PFAS Types:

• Polymer vs. Non-Polymer PFAS

• Polyfluoroalkyl substances

• Naming Conventions

• Long-Chain vs. Short-Chain

• Linear vs. Branched

• Currently short-chain PFAs is be** What are they (Round 2) PFAS Properties and Names

PFAS Types:

-
-
-
-
-
-
- Currently short-chain PFAs is being used to replace long chain PFAs
- Types impact chemical characteristics

What are they (Round 2) PFOS and PFOA are only the tip of the PFAS iceberg

N-MeFOSAA N-EtFOSAA

PFAS FAMILY TREE

That is, Alphabet soup

Replacement Chemistry

- Concern regarding the persistence, bioaccumulation, and possible ecological and human health effects of long-chain PFAAs has led manufacturers to develop replacement short-chain PFAS **Replacement Chemistry**
Concern regarding the persistence, bioaccumulation, and possible
ecological and human health effects of long-chain PFAAs has led
manufacturers to develop replacement short-chain PFAS
chemistries tha
- Still accumulating data on health effects of short chain PFAs

Short Chain versus Long Chain

- Solubility typically increases when the carbon chain number decreases.
- Sorption typically increases when the carbon chain number increases.
- Solubility typically increases when the carbon chain number decreases.
• Sorption typically increases when the carbon chain number decreases.
• Surfactants can form foam when gas is applied to the water. Foam increases w **Short Chain versus Long Chain**
Solubility typically increases when the carbon chain number decreases.
Sorption typically increases when the carbon chain number increases.
Surfactants can form foam when gas is applied to t
- Short-chain PFAS can have higher volatility.

How do we measure them?
Laboratory Analytical Methods
 ing (Potable) Water –;

ethod 537.1 – 18 PFAS

Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction an How do we measure them? Laboratory Analytical Methods

• Drinking (Potable) Water –;

- Method 537 $1 18$ PFAS
	- Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)
-
- Method 533: 29 PFAS;
• Determination of PFAS in Drinking Water by Isotope Dilution Anion Exchange SPE and LC/MS/MS (2019)

• Non-Potable Water and Other Environmental Media

- Method 8327: 24 PFAS;
	- Using External Standard Calibration and MRM LC/MS/MS (2019)
- Draft Method 1633 40 PFAS;
	- wastewater, surface water, groundwater, soil, biosolids, sediment, landfill leachate, and fish tissue.
- Air
	- Other Test Method (OTM)-45 -50 PFAS +
- Total Total Organic Fluorine (TOF), Total Oxidizable Precursors (TOP)

Furn Around and other issues
• Currently 2 – 8 weeks Turn Around Time
• Cost - \$300 to \$500 +per sample **Turn Around and other is**
• Currently 2 – 8 weeks Turn Around Time
• Cost - \$300 to \$500 +per sample Turn Around and other issues

-
-

Sampling Methods PFAS Sampling Dos and Don'ts

PFAS Sampling Dos and Don'ts continued

Other Special Considerations

- Field QC
- Decontamination of sampling equipment
- No pre-wrapped food or snacks
- Avoid cosmetics, moisturizers, hand creams on day of sampling.
- Do not filter aqueous samples.
- Visitors to site must remain at least 30 feet from sampling area.
- Wash hands with water after leaving vehicle before setting up on a well.
- Field blanks

Equipment Decontamination

prevent cross-contamination.

- 3. Sampling equipment scrubbed with polyethylene or PVC brush to remove particulate.
- 4. No food or beverage consumed in sampling area
- 5. Only bottled water or Gatorade for hydration OUTSIDE of the sampling area
- 6. Wash hands and change nitrile gloves frequently.

Regulatory Issues

- Toxic release inventory now reporting PFAS
- **CHANGE CONSTRESS FRAGGIORS FRAGGIORS PRAS**
• USEPA developing PFAS emission limit guidelines
• Preliminary Effluent Guidelines Program Plan 15
• Organic chemicals, plastics and synthetic fibers (OCPSF)
- Preliminary Effluent Guidelines Program Plan 15
	- Organic chemicals, plastics and synthetic fibers (OCPSF)
	- Metal finishing
	- Meat and poultry products
	- Steam electric power generating
	- Landfills
	- Textile mills
- Beginning to see effluent limits for discharges
- Toxic release inventory now reporting PFAS
• USEPA developing PFAS emission limit guidelines
• Preliminary Effluent Guidelines Program Plan 15
• Organic chemicals, plastics and synthetic fibers (OCPSF)
• Metal finishing

What Do We Do About It?

• Available technologies for PFAS removal:

High Pressure **Membranes**

What do we do about it? GAC Treatment Option

High Pressure **Membranes**

- Water quality (e.g., low organics)
- Compatible with existing treatment
- Low GAC operation tasks
- Exhausted Carbon Management
- \checkmark Comparatively lower cost (vs. membranes)

Activated Carbon

General Comments:

(EBCT) is in minutes

2-5 gpm/ft 2

Typically operate downflow

Typically Empty Bed Contact Time

Typical Superficial Velocities:

- Granular Activated Carbon (GAC) Well Demonstrated **Activated Carbon**

Franular Activated Carbon (GAC) Well Demonstrated

• Bituminous GAC – increasing full scale installations

• Competing Organics fill absorption sites

• Needs high quality GW treatment (Fe, TDS, etc.)
	-
	- Competing Organics fill absorption sites
	- Needs high quality GW treatment (Fe, TDS, etc.)

GAC Adsorption

- With GAC, adsorption occurs on the surface of the interior graphite platelets which are the solid part of the porous structure of the granules With GAC, adsorption occurs on the
surface of the interior graphite platelets
which are the solid part of the porous
structure of the granules
Adsorption is an equilibrium process and
capacity is concentration dependent
Ex
- Adsorption is an equilibrium process and capacity is concentration dependent
- Exhausted GAC can often be sent to a reactivation furnace to destroy the adsorbates and produce a reusable

GAC Perfluorinated Compound Adsorption

- GAC has been in use at Minnesota sites for groundwater treatment for many years in this service
- Spent GAC can be successfully reactivated from this service for a minimum of waste generation
- As is typical of GAC adsorption, smaller and lower formula weight compounds tend to adsorb less strongly than larger, heavier compounds with similar structures. Ste generation

d to adsorb less

Courtesy USAF – Jt. Base Cape Cod

Ion Exchange Treatment Option

High Pressure **Membranes**

- Water quality (e.g., low organics)
- Compatible with existing treatment
- \checkmark Smaller footprint than GAC
- \checkmark Exhausted media management
- **Comparatively** lower cost (vs. membranes)

IX - Single-Use Selective Resin or
Regenerable Media + Incineration Regenerable Media + Incineration

General Process Flow Scheme Using Ion Exchange

- -

Courtesy Purolite, Inc.

Reverse Osmosis Option

High Pressure | \checkmark **Membranes**

- \checkmark Water quality (e.g., low organics)
- Compatible with existing treatment
- Removes all contaminants
- Regenerant stream
	- management
- **Comparatively** lower cost

Reverse Osmosis Process Flow
• Membrane Based Separation Process- 99.9% removal +/-
• Separates Water from Organic and Inorganic Compounds. Reverse Osmosis Process Flow

-
- Separates Water from Organic and Inorganic Compounds. 30,000 E 18,000 E 18,000 E 16,000 E 16,000
- Effluent is PFAS free.
- What to do with Reject???
	- Discharge to ocean (depends on location)
	-
	- Solidification
• Evaporation Crystallization
		- Heat needed
		- Air Emissions
	- Other
		- Electrochemical Oxidation
		- Plasma

Courtesy: Rochem Corp

Reverse Osmosis

- Membrane Based Separation Process. 99.9% + removed
- Separates Water from Organic and Inorganic Compounds.
- If recirculation is allowed, returns the contaminants to the landfill where they were originally deposited.
- Effluent for reuse or disposal.

Groundwater Treatment

- Groundwater
	- Ex-Situ
	- In-Situ

In-Situ Groundwater Treatment
• Colloidal GAC
• Injection and stabilize PFAS – Permeable Reactive Barrier (PRB)
• Cut-off wall versus Funnel & Gate In-Situ Groundwater Treatment

- Colloidal GAC
-
- Cut-off wall versus Funnel & Gate

130 ng/L PFAS + PCE

Courtesy REGENESIS: https://clu-in.org/conf/tio/DCHWS10/slides/3Slide_Presentation_for_Ryan_Moore_(YM),_REGENESIS.pdf

Injectable Liquid Sorbents

- Similar to PlumeStop but non-proprietary materials Treatment Concept: PAC PAB
- Multiple US DOD research projects:
	- UMN, Tufts, Jacobs
	- UAZ, Jacobs
- US DOD full-scale field pilot test funded
- Multiple polymers have been tested to find **FRO-PEAS** optimal one(s):
	- PolyDADMAC (PDM)
	- Polyamine
	- "Designer" polymers
- In combination with powdered activated carbon (PAC) and Permeable Absorptive Barrier (PAB)

with PolyDADMAC Injection

Current Ex-Situ Groundwater Technologies and Surface Water

- Similar to Drinking Water Already Presented
- Most Amenable to Ex-situ Treatment
	- Modified Bentonite (Fluorosorb)
	- Carbon
	- Resin
	- RO

Source: Australian DOD 2018

Source: NH Business Review 2018v

Four Adsorbents

Relative Adsorbance?

Modified Bentonite (Adsorbent)

- Effective on groundwater
- Minimal pretreatment
- Unaffected by organic content
- PFOS, PFAS >99% removal
- Longer bed volume than GAC PFAAs (PPT) 10.0
- Spent media fixation/disposal
- Pilot tests needed

Surface Modified Bentonite (Adsorbent)

- Bench test on GW, Leachate
- Pretreatment
- PFOS, PFAS >99+% removal
- Longer bed life than GAC
- Spent media fixation/disposal • Spent media fixation/disposal
• Susceptible to foulants
-
- Static Bed versus Fluidized Bed 0 0 0 5,000 10,000

Modified Bentonite PFAS Effluent

Surface Modified Clay Performance

PFAS REMOVAL EFFICIENCY - LANDFILL LEACHATE

Adsorbents Bench Test System

- 3 stage GAC: 10-minute EBCT (3-GAC)
- Modified Bentonite (MB) adsorbent: 10-minute EBCT
- PFAS Contaminated Pilot Test in Orange County, CA

Granular Activated Carbon Total PFAS Analyzed, ng/L

Orange County GW Pilot Program

Wastewater PFAS Treatment Processes

- Few Process are single unit operations
- Commercial Status Full Scale / Limited / Developing or Laboratory

Current Liquids Treatment Technologies (Usually Treatment Trains)

• Separation Technologies

- Activated Carbon
- IX Resin
- Foam Fractionation
- Deep Well
- RO
- Other Adsorbents
- Residuals Management

Source: Australian DOD 2018

Source: NH Business Review 2018v

Foam Fractionation

- Several manufacturers
	- EPOC (Allonia); Montrose; ECT2; Arcadis; Evocra; Sanexen; others
- Air, Nitrogen, Ozone (Ozofractionation) separation on ozone/air microbubbles due to PFAS surfactant properties;
- Polar properties of PFAS attach "head" to bubbles for removal
- Nano-bubbles extracts 95% long & short chain (aphrons).

First EPOC Foam Fractionation Pilot Test
 • Removal of six Massachusetts PFAS to below drinking water standards - < 20 PPT

• Removal efficiencies in excess of 99% or <MDL of 1 PPT

• Removal efficiencies in excess of First EPOC Foam Fractionation Pilot Test on Leachate in the US!

-
- Removal efficiencies in excess of 99% or <MDL of 1 PPT

Foam Fractionation

- Takes advantage of foaming capabilities as PFAS attaches to micro or nano sized bubbles
- Better performance on long chain (almost 100% removed)
- Very inexpensive operation
- Small amount of residual concentrated PFAS

SAFF in Action

Residual Technologies • Stabilization/Solidification – Pending regulatory questions (
• Cementitious S/S
• Encapsulation (In totes or vessels)
• Holcim/ADC
• Return to the landfill
• Hazardous Waste Landfill Haul and Dispose
• Destruction – Sim **Example 15 Accord Control Control Control Control Control Control Control Control Contributed to the landfill Control Control**

- **Property: Alternative Concernsition Stabilization/Solidification Pending regulatory questions (LDRs)**
• Cementitious S/S
• Encapsulation (In totes or vessels)
• Holcim/ADC.
	- - Encapsulation (In totes or vessels)
		- Holcim/ADC
	- Return to the landfill
	- Hazardous Waste Landfill Haul and Dispose
- -
	-
	- Plasma
• Supercritical Water Oxidation
	- ElectroChemical Oxidation
	- Reductive Defluorination Technology

Leachate Residuals PFAS Stabilization

• CEC Solidification of SAFF

• 0.6:1 TCLP 99.9% retention all PFAS

PFAS Solidification Trials for Soils

[PFOA+PFOS] in leachate in all soils using TCLP Test.

Techniques:

Mixture of generic S/S amendments known to sorb PFAS*: Powdered activated carbon (PAC), Iron oxide (Fe2O3) powder, Montmorillonite clay, Ground-granulated blast-furnace slag (GGBFS), and Portland cement (PC) provides:

a of generic S/S amendments known to sorb

:

red activated carbon (PAC),

ide (Fe2O3) powder,

norillonite clay,

d-granulated blast-furnace slag (GGBFS), and

nd cement (PC)

Sorb

sal:

I

late Daily Cover

[

Fluoro Sorb

Disposal:

Landfill Alternate Daily Cover

 $[PPOS] = 14,000 - 100,000$ ng/Kg

Tested with Fluoro Sorb from Cetco

Fixation of Residuals

(Holcim/Lafarge)

- Proprietary cement binder
- No free liquid (Paint Filter Test)
- Friable for use as Alt Daily Cover

Plasma PFAS Transformation

G. R. Stratton, F. Dai, C. L. Bellona, T. M. Holsen, E. R. V. Dickenson and S. Mededovic Thagard, "Plasma-based water treatment: Demonstration of efficient **Clarkson**
 Clarkson
 Clarkson
 CLARET UNIVERSITY
 CCRUSE (PERSITY ACTS)
 GCRUS
 CCRUS
 CCRU Clarkson
 Clarkson
 Clarkson
 C R. Stratton, F. Dai, C. L. Bellona, T. M.

Holsen, E. R. V. Dickenson and S. Mededovic

Thagard, "Plasma-based water treatment:

Demonstration of efficient

perfluorooctanoic acid (P reactants" Environmental Science & Clarkson

Which

UNIVERSITY

defy convention

G. R. Stratton, F. Dai, C. L. Bellona, T. M.

Holsen, E. R. V. Dickenson and S. Mededovic

Thagard, "Plasma-based water treatment:

Demonstration of efficient

perfluorooctanoi

Plasma

the bench-scale reactor. The overall treatment efficiency is significantly higher compared to

Removal groundwater (naval research site, Warminster, PA) Treatment of contaminated Treatment of contaminated
groundwater (naval research site,
Warminster, PA)
PFOA & PFOS

PFOA & PFOS concentration was reduced by at least 75% within one Example at the contain and the search site of the same minister, PA
arminister, PA
PFOA & PFOS
concentration was reduced
by at least 75% within one
minute of treatment Experiment of contaminated

Internal research site,

FOA & PFOS

Internal Mededovic Thagard, Clarkson

Internal Mededovic Thagard, Clarkson

Courtesy of Selma Mededovic Thagard, Clarkson

University and John Van Winkle, 88 Internet of contaminated

Indwater (naval research site,

minster, PA)

FOA & PFOS

pncentration was reduced

y at least 75% within one

linute of treatment

University and John Van Winkle, 88th Air Base Wing

University a EXECUTE: THE MANUSIC THE MANUSIC THE MANUSIC MINITED SPONDENT AND NOT COUNTER THE MANUSIC COUNTERS TO A SUBSERVING THAT AND COUNTERFUND UNIVERSITY and John Van Winkle, 88th Air Base Wing
Public Affairs
Public Affairs

PLASMA VORTEX

Plasma hydrocyclone

WATER ENTERS TANGENTIALLY AT THE TOP, SPINS DOWN, THEN Influent exits at the center top forming a reverse vortex tornado flow.

Arc generator

Power supply connected to a proprietary electrode set, injecting gas, ignites plasma and stretches plasma through the arc reactor.

▲ Effluent **SIDE VIEW Cyclonic flow** entering 3-phase flow exiting Stretched plasma Power supply Electrode set Gas injection

Cyclonic separation of **SOLIDS**

Recirculation of plasma carrier gas (argon)

Plasma Vortex

(Onsite Destruction without Air Emissions)

- ♦ Best used for small volumes of concentrated PFAS removed by other processes (i.e., Foam Fractionation)
- ♦ Free and hydrated electrons in plasma (reductive reactants) break C-F bonds due to their very high energy (50 to 100 eV) and very low mass
- Reactions are rapid until perfluorobutanoic acid (PFBA) is formed; PFBA degrades more slowly
- Near-complete degradation produces dissolved fluoride anion, small amounts of gaseous fluorocarbons

Supercritical Water Oxidation (SCWO) **Supercritical Water Oxida**

• Water above 705°F and 3,200 lbs/in² -

Rapidly destroys PFAS

• >99.99% removal under 10 seconds or

• If organics, no additional fuel needed

• Creates HF – needs neutralization

• Tests 9

- Water above 705° F and 3,200 lbs/in² -- Rapidly destroys PFAS
- >99.99% removal under 10 seconds or less
- If organics, no additional fuel needed
-
- Tests 99+% reduction in landfill leachate for 12 PFAS : 3,600 ng/L to 36 ng/L (Jama et al 2020)
- Battelle building a mobile trailer for 3,500 gal/day

Figure 1. SCWO reactions occur above the critical point of water. Image credit: Jonathan Kamler.

EPA, Jan 2021

Electrochemical Oxidation **al Oxidation**

everal Vendors

• ECT2; Aclarity; Sanexen; Siemens; OXbyEL; others

ower Requirements

• 0.125 - 0.5 kwh/gallon

• 6 volts produces free electrons

lectrode materials

- Several Vendors
	- ECT2; Aclarity; Sanexen; Siemens; OXbyEL; others
- Power Requirements
	-
	- 6 volts produces free electrons
- Electrode materials
	- Titanium; boron doped diamond
- Single pass v. multiple pass
- Destroys ammonia too!

Electrochemical Oxidation

- Landfill Leachate in Bench Test
- Chemical oxidation followed by electrochemical oxidation
- ½ KwH per gallon? Ammonia destruction/PFAS destruction

Comparative Emerging Contaminants Treatment Technologies

Summary

- PFAS Treatment typically two stage process (concentration to destruction) • Summary
• Largest University that will be the "allowed" was the "alternatives exist for concentration step
• Technologies are mostly mature with some minor improvements expected
• Largest unknown – what will be the "allo
	- Alternatives exist for concentration step
		- Technologies are mostly mature with some minor improvements expected
		-
	- - What will be EPA's directives/mandates?
		- Approved Destructive Method(s)?
		-
		- Huge technology advances ongoing for most methods
- **Summary**
• Treatment typically two stage process (concentration to destruction
• Technologies are mostly mature with some minor improvements expected
• Largest unknown what will be the "allowed" wastewater discharge lim • Market seems to be creating Hub/Spoke system for PFAS management – on-site concentration step followed by destruction treatment hub

Treatment Challenges

- Carboxylates (ex. PFOA) harder to remove than Sulfonates (ex. PFOS)
- Longer chain easier to remove/destroy than shorter chain
- Many technologies focus on longer chain, shorter chain problematic
- Many technologies require multi step processes
- Mixtures, precursors, co-contaminants
- Incomplete mineralization
- Energy intensity
- Peer Reviews for leachate PFAS destruction technologies
- Limited field-scale examples
- Life cycle costs?

Case Study – Reverse Osmosis
Midwest Landfill Leachate

Midwest Landfill Leachate

MSW Oct 25, 2018; Pat Stanford, Rochem

Previously: 25,000 gpd to LF gas evaporator Excess hauled Excessive costs

Reverse Osmosis: 80,000 gpd 2 Rochem Units Residuals returned to landfill Landfill gas now for energy production

Reverse Osmosis PFAS Removal

OHSL-Reverse Osmosis System

Rochem, EGLE, and MWRA Landfill Leachate PFOA and PFOS Study, March 2019

Case Study - Foam Fractionation

Courtesy: OPEC

SAFF Process Flow Diagram May 2019 April 2021

SAFF[®] Concentration Process (AACO)

Case Study – LF Foam Fractionation Case Study $-$ LF Foam Fractionation
Telge LF- 250,000 L/Day (66,000 gpd) **Case Study - LF**
Telge LF- 250,00
System inside 40-foot container, Insulated
- Pretreatment and Foam Fractionation
- 4 treatment vessels
- Batch operation **Case Study — LF**

Telge LF- 250,0

System inside 40-foot container, Insulated

- Pretreatment and Foam Fractionation

- 4 treatment vessels

- Batch operation

- Separation Stage and enrichment stage

- Effluent single pp **Case Study — LF**
 Telge LF- 250,0

System inside 40-foot container, Insulated

- Pretreatment and Foam Fractionation

- 4 treatment vessels

- Batch operation

- Separation Stage and enrichment stage

- Effluent single Case Study — LF Foam

Telge LF- 250,000 L/Day (6

System inside 40-foot container, Insulated

- Pretreatment and Foam Fractionation

- A treatment vessels

- Batch operation

- Separation Stage and enrichment stage

- Effl **Case Study — LF**

Telge LF- 250,0

System inside 40-foot container, Insulated

- Pretreatment and Foam Fractionation

- A treatment vessels

- Batch operation

- Separation Stage and enrichment stage

- Effluent single pp Case Study — LF

Telge LF- 250,0

System inside 40-foot container, Insulated

- Pretreatment and Foam Fractionation

- 4 treatment vessels

- Batch operation

- Separation Stage and enrichment stage

- Effluent single ppt

System inside 40-foot container, Insulated

- combined
-
-
-
-
-

HMI controls stage timing, power, cycles, remote operation, reporting

3 stages of Foam **Concentration** Stage

Courtesy: OPEC

 $CI1$

Slide 65

CI1 Cooper, Ivan, 6/1/2021

Foam Fractionation Results Telge LF (Stockholm, Sweden)

OPEX Costs for Removing PFAS from Landfill Leachate: SAFF40 case study after two months recycling leachate from a Telge landfill facility in Sweden

Courtesy: OPEC

Case Study – FluoroSorb

- Bench test
- Pilot Test
- -
	-
	-
	- Moving bed media filtration
	- Moving bed Fluoro Sorb media
	- Effluent storage
	- Clarifier solids & backwash concentrated/dewatered
	- Solidification residual solids with cement Landfill disposal
	-
	- Effluent < 20 ppt

Case Study – FluoroSorb

1st Phase Pilot Study

FluoroSorb Process Flow Diagram

FluoroSorb Plant Layout

Solids Remediation Technologies

What's available now: Field-Demonstrated Technologies

What's around the corner: Limited Application Technologies

Sorption/Stabilization

- Immobilization via sorption
- Powder-based reagents with high surface area:
	- Example: Powdered activated carbon, aluminum hydroxide, kaolin clay
	- Added from 1-5% by weight to soil
	- Fully commercial & field demonstrated **Aluminum**
- In situ with large diameter augers possible

Does not eliminate liability

Excavation and Off-Site Disposal

- PFAS non-hazardous at present
- Dispose in Subtitle D permitted facility
- Some landfills not accepting PFAS soils
- Subtitle C permitted (hazardous) disposal 8-10x more expensive
- Future designation may impact options:
	-
	-

Excavation and Off-Site Incineration

- Must be $>1,100$ °C for PFAS
- Destruction assumed but not well documented
- Sampling methods still being developed
- US EPA, US DOD and other research programs looking closely at destruction in thermal systems
- One thermal facility in the US permitted by state for PFAS soil treatment (Moose Creek, Alaska)
- Hazardous designation could impact cost and availability

PFAS Summary

- Chemistry is important
- Regulations are evolving, Federal, State, Local
- Permitting and treatment are coming
- PFAS has health concerns
- Sampling is costly and time consuming
- Analytical methods still being determined
- Various treatment technologies exist
	- Complicated
	- Ultimate disposal evolving
	- Expensive

