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CHAPTER 6 

OPEN CHANNEL DESIGN 
 

 

GENERAL 

 

Artificial stormwater channels are critical components of the stormwater management system. 

Three prime concerns govern their design: that they carry their design storm flows without 

overtopping, that they carry those flows without being excessively eroded, and that they are 

economically constructed and maintained.  The consequence of failure to provide sufficient 

capacity is flooding.  The consequences of excessive bank erosion are eventual undermining of 

facilities near the channel and abnormally high contributions of sediment to downstream 

channels and lakes. 

  

The design of two frequently encountered channel types is treated here.  One is the common 

trapezoidal channel, and the other is the triangular swale.  The latter is a subset of the former. 

Triangular swales are usually used for smaller design discharges than trapezoidal channels.  

 

 

MATHEMATICAL MODEL 

  

The Manning equation is the model of choice for many design and analysis applications in which 

the channel is flowing under the influence of gravity.  Its mathematical flexibility makes it a 

powerful tool in a wide variety of conditions.  One should take care, however, to apply the 

equation in circumstances where its fundamental assumptions are satisfied.  

 

The Manning equation is applicable where flow is steady and uniform.  Steady flow means that 

discharge does not vary with time.  Uniform flow means that velocity does not vary with 

distance at an instant of time.  Although discharge does vary in a channel during the passage of a 

flood wave, during the time around the peak, the time of interest in channel design, flow is 

essentially steady.  Uniform flow generally requires channel cross-sections to be the same along 

the channel length, and it requires a straight alignment.  But it is reasonable to apply the 

Manning equation to most field cases where channel segments are practically prismatic and 

straight.  

 

The Manning equation is well-suited to the task of determining the configuration of the cross 

section for the channel.  Other models, such as water-surface profile computation, come into play 

after design when analyzing specific conditions of flow near obstructions, constrictions and other 

discontinuities.  
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DESIGN AND ANALYSIS PROCEDURES 

 

Basic Concepts 

 

The Manning equation can be stated as: 

 

Q = 1.486 A R 
2/3 
s 
1/2
    (6-1) 

           n 

 

in which  

 

Q = Discharge (cfs).  

 

n =  Manning roughness coefficient (dimensionless), an experientially determined value 

which is a function of the nature of the channel lining.  

 

A = Cross-sectional area of flow (square feet), the area through which flow takes place. 

 

R = Hydraulic radius (ft), found by dividing cross-sectional area, A (sq ft), by wetted 

perimeter, P (ft).  Wetted perimeter is the distance along the perimeter of the cross 

section against which water is flowing.  It does not include the free water surface.  

 

s =  Longitudinal slope of the water surface (ft fall/ft run).  If flow is uniform, it is also 

the slope of the invert of the channel.  

 

The constant, 1.486, is frequently rounded to 1.49, respecting that other parameters, most notably 

roughness, are rarely known to more than two significant figures.  The constant has units 

associated with it.  The value given here requires that the specified units be used for the values 

entered into the equation.  

 

 

For the trapezoidal application, the following definition sketch indicates some of the variables: 

Top of Stone  
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In the sketch,  

 

W = Top width of flow (ft). 

  

B  =  Bottom width of the channel (ft) 

 

y  = Depth of flow (ft). 

  

M = Side slope ratio (ft horizontal/ft vertical). (For a 2-to-1 side slope, the value of M is  

2.)  

 

Section Relationships  

 

The following equations are derived geometrically, and the units of the variables are consistent  

with those given above:  

 

A = By+My
2 
   (6-2) 

 

P = B + 2y √ 1 + M
2 
  (6-3) 

 

           W = B+2My    (6-4)  

 

R = A     (6-5) 

       P 

 

 The variable P represents wetted perimeter.  

 

Four Main Procedures 

 

Four main design tools are considered here. Each is an extension of the Manning equation and is 

subject to the same assumptions of the existence of steady, uniform flow.  The tools are 

developed as the following procedures: 

  

1. Best hydraulic section procedure.  

2. Velocity-limited procedure.  

3. Normal-depth procedure.  

4. Depth-limited procedure.  

 

Using these, singly or in combinations, one can quickly arrive at a cross section appropriate to 

the design objectives.  

 

Best Hydraulic Section  

 

The best hydraulic section is that cross section which simultaneously minimizes cross-sectional 

area and wetted perimeter.  Minimizing cross-sectional area minimizes the quantity of 

excavation.  Minimizing wetted perimeter minimizes the quantity of lining.  These are the two 
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principal cost sources in channel construction.  Land taken by the channel is another cost source, 

and land quantity is not necessarily minimized in the best hydraulic section.  But even when land 

is quite expensive, it does not influence greatly the economic choice of section dimensions. 

Thus, the best hydraulic section is likely to be the least expensive channel alternative, if it is 

otherwise satisfactory.  If it will not work, it is usually because it is too deep for site conditions, 

or because flow will be too fast for the lining.  

 

The best of all hydraulic sections is the semicircular cross section, but it is rare that it is practical. 

For trapezoidal cross sections, the best hydraulic section is half of a regular hexagon - a channel 

with side slopes too steep for many linings.  But even for the usable side slopes, those flatter than 

1/1, there is a certain combination of bottom width and depth that will minimize cross-sectional 

area and wetted perimeter, and thus qualify as the best hydraulic section for those conditions.  

The following procedure can be used to compute the bottom width (B) and the depth (y) of the 

best hydraulic section: 

  

1. Select a candidate lining, and determine its Manning roughness coefficient, n.  

 

2. Select a side slope, M, suitable for the soil and lining conditions.  

 

3. From Exhibit 6-1 find the constants k and Cm for the side slope.  

 

4. Find the depth, y, of the best hydraulic section from Equation 6-6.  

 

5. Find the bottom width, B, of the best hydraulic section from Equation 6-7. 

 

6. Check the depth, y, against profile constraints. 

  

7. Compute the average cross-sectional velocity, V = Q/A, and check against the 

lining velocity limit. 

  

8. If these values of B and y are used with the other data in the Manning equation, it 

will yield the design discharge, Q. 

 

  

The depth, y, and bottom width, B, of the best hydraulic section can be found from Equations 6-6 

and 6-7, and Exhibit 6-1.  

 

y = Cm Qn  
3/8
                                    (6-6) 

 √s  
 

B =ky                                     (6-7)  

 

Note that the depth and bottom width computed in Equations 6-6 and 6-7 are a "matched pair." 

Equation 6-6 is no good for computing the depth of flow in a channel for which the bottom width 

is known. Use the Normal Depth procedure for that.  
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Velocity-Limited Procedure 

  

Frequently, in the design of trapezoidal channels, the velocity expected for the best hydraulic 

section is too great for the lining of interest. The following procedure will avoid a laborious trial-

and-error exercise: 

  

1. Ensure that the assigned velocity, Va, is less than the velocity of flow computed for 

the best hydraulic section (the channel will not flow any faster).  

 

2. Compute the required cross-sectional area:  

 

Ax = Q      (6-8) 

                  Va 

where  

                                     

Ax = Required cross-sectional area (sq ft)  

Q  = Design flow (cfs).  

Va = Assigned (desired) velocity (ft/sec)  

 

3. Compute working constants:  

 

W1 = M – 2 √ 1 + M
2
     (6-9) 

 

(W1 is always negative.)  

 

W2 =       Ax    ___         (6-10) 

              Va n     
3/2
 

            1.49 √s  
 

  

4. Compute the depth of flow:  

 

y = -W2 + √W2
2
 + 4W1Ax    (6-11) 

2W1  

 

5. Compute the bottom width: 

  

B = Ax – My     (6-12) 

        y  

 

6. If these values of B and y are used with the other data in the Manning equation, it will 

yield the design discharge, Q; and, if velocity is computed, it will equal Va.  
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The Velocity-Limited procedure frequently produces a channel that is unrealistically wide and 

shallow.  This will happen if the assigned velocity, Va, is significantly slower than the best- 

hydraulic-section velocity.  It is usually better to go to a more robust lining than to put in a very 

wide channel. 

 

  

Normal-Depth Procedure  

 

The problem of finding the normal depth of flow in a trapezoidal channel is very frequently 

encountered.  It is necessarily a trial-and-error procedure.  To find normal depth is to find the 

depth of flow, y, that satisfies the Manning equation.  Usually one is asked for the expected 

depth when a certain flow occurs, given the dimensions of the channel, including bottom width.  

 

An efficient manual procedure for finding normal depth follows.  

 

Rearrange the Manning Equation as:  

 

A R 
2/3
 =      Qn                                               (6-13)  

     1.49 √s  
 

In this form, the right-hand side contains knowns, and the left- hand side contains unknowns. 

When the values of B and y, and thus A and R, are chosen correctly, the left-hand side will equal 

the right-hand side and Manning is satisfied.  So, think of the right-hand side as a required 

quantity, Zreq.  It can be computed as a single value at the beginning of the problem:  

 

Zreq  =  Q n          (6-14) 

1.49 √s  
 

Think of the left-hand side as the quantity available in a given section, Zav:  

 

Zav =AR 
2/3
  

 

Now, select y such that Zav is tolerably close to Zreq , and that y is the depth at which the channel 

will flow. 

  

 

Depth-Limited Procedure  

 

The depth-limited procedure is quite useful for cases where channel depth is limited by profile  

constraints. The procedure can be executed precisely parallel to the normal-depth procedure 

detailed above. One decides on the depth at which the channel should flow under the given 

conditions. The bottom width is computed as the output. 
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Triangular Swales 

 

Triangular swales may be treated as trapezoidal channels with bottom width, B, equal to zero. 

The four analytical tools described for trapezoidal channels apply.  It is true, however, that the 

absence of a bottom width makes it unnecessary to resort to trial-and-error solutions in many 

cases.  One can substitute into the Manning equation directly and find solutions algebraically.  

 

When a triangular swale is the economical solution, a best-hydraulic-section analysis will point 

to it.  Bottom width, B, will compute to a trivially small value.  Note that the bottom width can 

never be exactly zero, because depth, y, cannot be zero, and Equation 6-7 will always yield a 

non-zero value for B.  Triangular swales will usually be the solution of choice when side slopes 

are flat, say 4/1 or flatter. 

  

Grass-lined triangular swales are frequently used in open-area drainage, such as roadway 

medians, interchanges, open space in developments of multi-family dwellings, and along streets 

not constructed with curb and gutter.  In these applications, the capacity of the grass-lined swale 

is normally limited to the discharge at which flow approaches erosive velocity.  Two 

mathematical models can be combined to compute an allowable drainage area for a given point 

along a channel.  If the actual drainage area exceeds the allowable, one would expect the channel 

to erode.  Equating the Rational formula and the Manning equation through the discharge Q, and 

solving for the allowable drainage area in terms of other parameters set in the design process, 

one obtains:  

 

Ad =  1.21 Va
4
  (1 + M

2
)    n    

3
            (6-16) 

        CIM                 √s 
 

in which  

Ad = Allowable drainage area (ac) for the point of interest along the channel.  

I    =  Applicable rainfall intensity (in/hr) for the storm of interest (usually the 5-min. 

storm of an appropriate return period.  

C   =  Rational runoff coefficient (dimensionless), composited for the drainage area.  

n    =  Manning roughness coefficient (dimensionless) for the channel lining.  

s    =  Longitudinal channel slope (dimensionless) at the point of interest along the 

channel.  

Va  =  Allowable velocity of flow (ft/sec) for the channel lining. 

M  =   Horizontal component of side slope (for 2/1, M = 2) 

 

Once these parameters have been set for the point of interest, for detailing purposes, the  

following can be computed for conditions of full allowable flow: 

 

 The allowable discharge is:  

 

Q=CIAd=VaMy
2
                                   (6-17) 

 

 The depth of flow at allowable discharge is: 
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y =   C I Ad    
1/2
      (6-18) 

         VaM  

The top width (for setting the required width of lining at allowable flow) is: 

  

W=2My                                    (6-19)  

 

The equations are most useful in a spreadsheet or in a program for a programmable calculator. 

Their best use is to move along a channel on the site plan, selecting points of interest and 

comparing the allowable to the actual drainage area. By trial and error, points may be found 

below which the channel would be overloaded. At such points, an inlet may be placed to relieve 

the load on the channel, or the channel may be lined as a concrete swale below that point. 

  

The equations also may be used to determine the extent and width of lining material to protect 

the channel against erosion just after construction until grass is established. 

  

Reference Data for Channels  

 

Typically, experiential information is needed to set the Manning roughness coefficient and to set 

limits on velocity of flow to preclude excessive bank erosion. The author has collected some 

defensible values for Manning roughness coefficients in Exhibit 6-2. Suggested values for 

allowable velocities for various linings appear in Exhibit 6-3.  

 

 

Practical Considerations  

 

The following are suggestions from a number of practitioners: 

  

1. Fine materials in the soil underlying a stone lining tend to migrate through the 

stone into the channel during high-flow events. A stone filter blanket or filter 

fabric placed between the stone lining and the bank material shall be utililized. 

  

2. The depth of stone lining should be two to three stone diameters.  

 

3. In some cases, designers line the banks, but not the bed. The bed is subjected to 

greater erosive stresses than the bank. If the bed is not lined, the designer should 

ensure that the bed material is sufficiently robust. 

  

4. Give special consideration to points of heaviest stress. These are the center of the 

bottom, on the bank about one fifth to one third of the depth up from the bottom, 

and along the outside of bends. 

  

5. In the design process, account for the projected maintenance policy for the 

channel lining. If weeds will be allowed to grow on the banks, they must be 

considered in setting the section dimensions.  
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EXHIBIT 6-1 

 

 

 

 
 

EXHIBIT 6-2 
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Suggested Maximum Velocities for Various Channel Linings 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

EXHIBIT 6-3 


